IN THE PRESENCE OF PALLADIUM COMPLEXES

Hiroshi Onoue, Ichiro Moritani and Shun-Ichi Murahashi Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
(Received in Japan 11 November 1972; received in WK for publication 8 necember 1972)
Although enamines have been well known as an active and important reagent of organic syntheses (1), their reactions with transition metal complexes have received little attention (2-6). Allylation of active-hydrogen compounds with allylic esters or phenoxides using palladium catalysts was reported to proceed via $\pi-a 11 y l p a l l a d i u m$ complexes $(7,8)$. Tsuji et al. reported briefly the reaction of enamines with π-allylpalladium chloride (5).

Hence, allylation of enamines with allylic esters or phenoxides is expected to be carried out catalytically. Further, bicycloketones are prepared by the reaction of enamines of c/cloalkanones with 1,4-diacetoxy or 1,4-diphenoxy-2-butene.

A typical procedure is as follows: A mixture of 1 -piperidinocyclohexene (0.1 mole), allyl phenoxide (0.11 mole), $\mathrm{Pd}(\mathrm{OAC})_{2}$ (0.5 mmole) and PPh_{3} (2 mmoles) in abs. benzene (50 ml) was heated at reflux under argon atmosphere (6 hr). After removal of benzene in vacuo, the residue was hydrolyzed by treatment with water (100 ml) at $100^{\circ}(0.5 \mathrm{hr})$ and extracted with ether. The ether extract was washed with aqueous NaOH to remove phenol, concentrated and distiled to give a colorless liquid ($79-122^{\circ} / 19 \mathrm{~mm}, 12 \mathrm{~g}$), a mixture of 2 -allylcyclohexanone (70%) and 2,6-diallylcyclohexanone (13%).

Reaction of 1 -piperidinocyclopentene with allyl phenoxide gave similarly a mixture of 2allylcyclopentanone (64%) and 2,6-diallylcyclopentanone (21%). Other allylic compounds such as allyl acetate, 1,2 or 3 -methylallyl acetate or phenoxide, etc., were tested successfully to
give the corresponding substituted allyl cycloalkanones. The effective palladium catalysts used were $\mathrm{Pd}(\mathrm{OAC})_{2}-\mathrm{PPh}_{3}, \mathrm{Pd}(\mathrm{AcAc})_{2}-\mathrm{PPh}_{3}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. Complexes of other transition metals such as $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{Pt}(\mathrm{AcAc})_{2}-\mathrm{PPh}_{3}$ and $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ also showed catalytic activity in the order $\mathrm{Pd}->\mathrm{Rh}->\mathrm{Pt}->\mathrm{Ru}$-complex. The fact that the reaction of both crotyl acetate and 3-acetoxy-1butene with 1-piperidinocyclohexene gave the same products, 2-(2-butenyl)cyclohexanone (trans/cis= 4.5), would suggest that these reactions proceed via a common intermediate, a $\pi-1$ methylallylpalladium complex.

If 1,4-diacetoxy or 1,4-diphenoxy-2-butene is used, 4-acetoxy (or phenoxy)-2-butenyl substituted enamine initially formed will again form a π-allylpalladium complex in which the β^{\prime}-carbon may attack the π-allyl group intramolecularly to afford bicycloketones. In anticipation of this hypothesis, synthesis of bicycloketones from enamines of cycloalkanones by single step was carried out.

A mixture of 1,4-diphenoxy-trans-2-butene (12.0 g) (II, $\mathrm{R}=\mathrm{Ph}$), $\mathrm{Pd}(\mathrm{OAC})_{2}$ (1 mmole), PPh_{3} (4 mmoles) and l-piperidinocyclopentene (7.7 g) ($\mathrm{I}, \mathrm{n}=0$) in abs. benzene was heated under argon atmosphere (3 hr). After the usual work-up, the products were submitted to silica gel chromatography. Distillation of the eluate gave bicyclo[4.2.1]non-3-en-9-one (III, $n=0$) ($1.9 \mathrm{~g}, 28 \%$, bp $72-73^{\circ} / 4 \mathrm{~mm}, \mathrm{mp} 49-50^{\circ}$), m/e $=136$, $\mathrm{ir} ; 3025 \mathrm{~cm}^{-1}(=\mathrm{CH}), 1740(\mathrm{C}=0), \mathrm{nmr} ; \delta 5.58$ (Ha), 2.93 $(\mathrm{HC}), 2.15(\mathrm{Hb}), 2.1-1.5$ (other ring protons). 2,4-Dinitrophenylhydrazone, mp 182-183. Hydrogenation over palladium sponge gave bicyclo[4.2.1]nonan-9-one, mp 109-110 (9). The results using other catalysts such as $\mathrm{Pd}(\mathrm{AcAc})_{2}-\mathrm{PPh}_{3}$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ - Ph 0 Na were virtually identical with that described above.

Reaction of 1-pyrrolidinocyclohexene with 1,4-diacetoxy-2-butene (II, $R=0 A C$) afforded a mixture of three products, bicyclo[4.3.1]dec-3-en-10-one (III, $n=1$), 6-exo-vinyl-bicyclo[3.2.1]-octan-8-one (IV, $n=1$) and 6-endo-vinyl-bicyclo[3.2.1]octan-8-one (IV, $n=1$). Each compound was separated by preparative vpc , and the structure was assigned on the basis of the following data.

Bicyclo[4.3.1]dec-3-en-10-one, mp 58-61 ${ }^{\circ}$, $\mathrm{m} / \mathrm{e}=150$, ir; $3015 \mathrm{~cm}^{-1}(=\mathrm{CH}), 1700(\mathrm{C}=0)$, nmr ; $\boldsymbol{\delta} 5.75(\mathrm{Ha}), 2.63(\mathrm{Hc}), 2.28(\mathrm{Hb}), 2.1-1.3$ (other ring protons). 2,4-Dinitrophenylhydrazone, mp 174-175 ${ }^{\circ}$.

The configurational assignment (exo- or endo-vinyl) of compounds (IV) was based on the chemical shift of the Ha proton. In 2- substituted norbornanes, the absorption of the endo proton usually appears upfield than that of the corresponding exo proton (10, 11).

6-exo-Vinyl-bicyclo[3.2.1]octan-8-one, ir; $1745 \mathrm{~cm}^{-1}(\mathrm{C}=0)$, 994 and 915 (terminal vinyl), $\mathrm{nmr} ; \mathcal{5} 5.18(\mathrm{Hb}), 4.89(\mathrm{HC}), 4.83(\mathrm{Hd}), 2.62(\mathrm{Ha}), 2.3-1.5$ (other ring protons). The seven lines (Hb) collapsed to four lines on irradiation at $\delta 2.62$ (Ha). 2,4-Dinitrophenylhydrazone, mp 127130 ${ }^{\circ}$. 6-endo-Vinyl-bicyclo[3.2.1]octan-8-one, $\mathrm{ir} ; 1750 \mathrm{~cm}^{-1}(\mathrm{C}=0)$, 993 and 915 (terminal vinyl), $\mathrm{nmr} ; \delta 6.02(\mathrm{Hb}), 5.15(\mathrm{Hd}), 5.13(\mathrm{Hc}), 2.84(\mathrm{Ha}), 2.4-1.4$ (other ring protons). The seven lines (Hb) collapsed to four lines on irradiation at $\delta 2.84$ (Ha). 2,4-Dinitrophenylhydrazone, mp 113$115^{\circ}$.

Similar reactions were performed on 1-pyrrolidinocycloheptene and 1-pyrrolidinocyclooctene, and the results are surmarized in Table 1.

Table 1. Bicycloketones from Cycloalkanone Enamines

(I)	R of (II)	n	(III) (\%)	(IV) (endo/exo)	(\%)
1-Piperidinocyclopentene	COCH_{3}	0	17	-	
	$\mathrm{C}_{6} \mathrm{H}_{5}$	0	28	-	
1-Pyrrolidinocyclohexene	COCH_{3}	1	30	34 (0.41)	
1-Pyrrolidinocycloheptene	$\mathrm{C}_{6} \mathrm{H}_{5}$	2	28	39 (2.21)	
1-Pyrrolidinocyclooctene	$\mathrm{C}_{6} \mathrm{H}_{5}$	3	12	28 (0.31)	
A mixture of (I) (0.05 mole), (II) (0.05 mole), $\mathrm{Pd}(\mathrm{OAC})_{2}$ (1 mmole) and PPh_{3}					

These reactions would be rationalized as shown in Scheme 1. Enamines (I) react with the π-allylpalladium complexe derived from (II) to give 4-phenoxy(or acetoxy)-2-butenyl substituted enamines (V). The enamines (V) also form π-allylpalladium complexes (VI), in which the $\boldsymbol{\beta}^{\prime}$-carbon attacks the $\pi-a l l y l$ group intramolecularly either path a or b followed by hydrolysis to give bicycloketones (III) or (IV). In fact, when reaction of l-piperidinocyclopentene with 1,4-di-acetoxy-2-butene was stopped in the early stage, formation of (III, $n=0$) was negligible, and was
obtained a hydrolysis product of an intermediate (V) ($n=0, R=\mathrm{COCH}_{3}$), 2-(4-acetoxy-trans-2butenyl)cyclopentanone. Ir; 1720 and $1740 \mathrm{sh}(\mathrm{C}=0$). 2,4-Dinitrophenylhydrazone, mp 98-100 , ir; $1730 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Scheme 1.
(I)

REFERENCES

(1) A.G. Cook, Ed., "Enamines: Structure and Reactions", Marcel Dekker, New York, 1969.
(2) K. Broderson, G. Opitz and D. Breitinger, Chem. Ber., 97, 2046 (1964).
(3) R.D. Bach and D.K. Mitra, Chem. Comm., 1433 (1971).
(4) T. Mitsudo, Y. Watanabe, M. Tanaka, K. Yamamoto and Y. Takegami, Bull. Chem. Soc. Japan, 44, 302 (1971).
(5) J. Tsuji, H. Takahashi and M. Morikawa, Kogyo Kagaku Zasshi, 69, 920 (1966).
(6) R. Noyori, K. Yokoyama, S. Makino and Y. Hayakawa, J. Amer. Chem. Soc., 94, 1772 (1972).
(7) E.A. Atkins, W.E. Walker and R.M. Manyik, Tetrahedron Letters, 3821 (1970).
(8) K. Takahashi, A. Miyake and G. Hata, Bull. Chem. Soc. Japan, 45, 230 (1972).
(9) C.D. Gutsche and T.D. Smith, J. Amer. Chem, Soc., 82, 4067 (1960).
(10) W.C. Wong and C.C. Lee, Canad. J. Chem., 42, 1245 (1964).
(11) K.L. Williamson, J. Amer. Chem. Soc., 85, 516 (1963).

